Giải phương trình 2 số phức là là một chủ để hay thuộc chương số phức lớp 12. Trong bài viết này mình sẽ chia sẻ với bạn không chỉ lý thuyết mà còn 6 dạng bài tập thường gặp. Đi kèm phương pháp luôn có ví dụ kèm lời giải chi tiết. Phần cuối có bài tập rèn luyện kĩ năng với hy vọng bạn luyện tốt chủ đề này. Ta bắt đầu
Mục Lục
- 1. Lý thuyết phương trình bậc 2 số phức
- a) Căn bậc hai của số phức
- 2. Các dạng bài tập giải phương trình số phức
- Dạng 1. Phương trình bậc hai với hệ số phức
- Dạng 2: Tìm các thuộc tính của số phức thỏa mãn điều kiện K
- Dạng 3. Tính giá trị của biểu thức
- Dạng 4. Bài toán sử dụng bất đẳng thức trong số phức
- Dạng 5. Sử dụng bình phương vô hướng
- Dạng 6. Sử dụng hình chiếu và tương giao
- 3. Bài tập phương trình số phức
1. Lý thuyết phương trình bậc 2 số phức
a) Căn bậc hai của số phức
Cho số phức w. Mỗi số phức z thỏa mãn ${{z}^{2}}=w$ được gọi là một căn bậc hai của w
b) Phương trình bậc hai với hệ số thực
Cho phương trình bậc hai $a{{x}^{2}}+bx+c=0,,left( a,,b,,cin mathbb{R};,ane 0 right)$. Xét $Delta ={{b}^{2}}-4ac$, ta có
- ∆ = 0 phương trình có nghiệm thực $x=-frac{b}{2a}$.
- ∆ > 0: phương trình có hai nghiệm thực được xác định bởi công thức: ${{x}_{1,2}}=frac{-bpm sqrt{Delta }}{2a}$.
- ∆ < 0: phương trình có hai nghiệm phức được xác định bởi công thức:${{x}_{1,2}}=frac{-bpm isqrt{|Delta |}}{2a}$.
Chú ý.
- Mọi phương trình bậc n: ${{A}_{o}}{{z}^{n}}+{{A}_{1}}{{z}^{n-1}}+…+{{A}_{n-1}}z+{{A}_{n}}=0$ luôn có n nghiệm phức (không nhất thiết phân biệt).
- Hệ thức Vi-ét đối với phương trình bậc hai với hệ số thực: Cho phương trình bậc hai $a{{x}^{2}}+bx+c=0,,left( ane 0 right)$ có hai nghiệm phân biệt (thực hoặc phức). Ta có hệ thức Vi-ét $left{ begin{gathered} S = {x_1} + {x_2} = – frac{b}{a} hfill \ P = {x_1}.{x_2} = frac{c}{a} hfill \ end{gathered} right.$
2. Các dạng bài tập giải phương trình số phức
Dạng 1. Phương trình bậc hai với hệ số phức
Ví dụ: Biết ${{z}_{1}},{{z}_{2}}$ là hai nghiệm số phức của phương trình ${{z}^{2}}-2z+4=0.$ Tính |z1| + |z2|.
Lời giải
Ta có $Delta ={{b}^{2}}-4ac=-12$
Căn bậc hai của ∆ là $pm isqrt{12}$
Suy ra phương trình có hai nghiệm phân biệt là ${{z}_{1}}=frac{2+isqrt{12}}{2}$ và ${{z}_{1}}=frac{2-isqrt{12}}{2}$
Dạng 2: Tìm các thuộc tính của số phức thỏa mãn điều kiện K
Ví dụ: Tìm các số thực x, y thỏa mãn điều kiện
a) (2 − i)x + (2 + y)i = 2 + 2i
b) $frac{{x – 2}}{{1 + i}} + frac{{y – 3}}{{1 – i}} = i$
Lời giải
Dạng 3. Tính giá trị của biểu thức
Phương pháp giải
Chuẩn hóa số phức, dựa vào điều kiện đã cho để tìm số phức z
Ví dụ: Cho số phức ${{z}_{1}}ne 0,$ ${{z}_{2}}ne 0$ thỏa mãn $left| {{z}_{1}} right|=left| {{z}_{2}} right|=left| {{z}_{1}}-{{z}_{2}} right|.$ Tính giá trị của biểu thức $P={{left( frac{{{z}_{1}}}{{{z}_{2}}} right)}^{4}}+{{left( frac{{{z}_{2}}}{{{z}_{1}}} right)}^{4}}$
Lời giải
Chuẩn hóa ${{z}_{1}}=1,$ đặt ${{z}_{2}}=a+bi,left( a,bin R right),$ khi đó $left| {{z}_{2}} right|=sqrt{{{a}^{2}}+{{b}^{2}}}$
Dạng 4. Bài toán sử dụng bất đẳng thức trong số phức
Phương pháp giải
Các bất đẳng thức cổ điển
Ví dụ 1: Cho số phức z thỏa mãn |z – 3 + 4i| = 4. Tìm giá trị lớn nhất của P = |z|
Lời giải
Ví dụ 2: Cho số phức z thỏa mãn điều kiện |iz + 4 – 3i| = 1. Tìm giá trị nhỏ nhất của |z|
Lời giải
Dạng 5. Sử dụng bình phương vô hướng
Phương pháp giải
Ví dụ . Cho hai số phức z1, x2 thỏa mãn |z1 + 2z2| = 5 và |3z1 – z2| = 3. Tìm giá trị lớn nhất của biểu thức P = |z1| + |z2|
Lời giải
Dạng 6. Sử dụng hình chiếu và tương giao
Phương pháp giải
Ví dụ: Cho các số phức z = x + iy, (x, y ∈ R) thỏa mãn |z + 2 – 2i | = |z – 4i| Tìm giá trị nhỏ nhất của |iz + 1|.
Lời giải
3. Bài tập phương trình số phức
Câu 1. Trong $mathbb{C}$, phương trình $2{{x}^{2}}+x+1=0$ có nghiệm là:
A. ${{x}_{1}}=frac{1}{4}left( -1-sqrt{7}i right);{{x}_{2}}=frac{1}{4}left( -1+sqrt{7}i right)$
B. ${{x}_{1}}=frac{1}{4}left( 1+sqrt{7}i right);{{x}_{2}}=frac{1}{4}left( 1-sqrt{7}i right)$
C. ${{x}_{1}}=frac{1}{4}left( -1+sqrt{7}i right);{{x}_{2}}=frac{1}{4}left( 1-sqrt{7}i right)$
D. ${{x}_{1}}=frac{1}{4}left( 1+sqrt{7}i right);{{x}_{2}}=frac{1}{4}left( -1-sqrt{7}i right)$
Lời giải
Ta có: $Delta ={{b}^{2}}-4ac={{1}^{2}}-4.2.1=-7=7{{i}^{2}}<0$ nên phương trình có hai nghiệm phức là:
${{x}_{1,2}}==frac{-1pm isqrt{7}}{4}$
Câu 2. Trong $mathbb{C}$, phương trình $left| z right|+z=2+4i$ có nghiệm là:
A. $z=-3+4i$
B. $z=-2+4i$
C. $z=-4+4i$
D. $z=-5+4i$
Lời giải
Đặt $z=a+bi,left( a,bin mathbb{R} right)Rightarrow left| z right|=sqrt{{{a}^{2}}+{{b}^{2}}}$.
Thay vào phương trình: $sqrt{{{a}^{2}}+{{b}^{2}}}+a+bi=2+4i$
Suy ra $left{ begin{gathered} sqrt {{a^2} + {b^2}} + a = 2 hfill \ b = 4 hfill \ end{gathered} right. Leftrightarrow left{ begin{gathered} a = – 3 hfill \ b = 4 hfill \ end{gathered} right.$
Ta chọn đáp án A.
Câu 3. Hai giá trị ${{x}_{1}}=a+bi,;,{{x}_{2}}=a-bi$ là hai nghiệm của phương trình:
A. ${{x}^{2}}+2ax+{{a}^{2}}+{{b}^{2}}=0$
B. ${{x}^{2}}+2ax+{{a}^{2}}-{{b}^{2}}=0$
C. ${{x}^{2}}-2ax+{{a}^{2}}+{{b}^{2}}=0$
D. ${{x}^{2}}-2ax+{{a}^{2}}-{{b}^{2}}=0$
Lời giải
Áp dụng định lý đảo Viet : $left{ begin{gathered} S = {x_1} + {x_2} = 2a hfill \ P = {x_1}.{x_2} = {a^2} + {b^2} hfill \ end{gathered} right.$
Do đó ${{x}_{1}},{{x}_{2}}$ là hai nghiệm của phương trình: ${{x}^{2}}-Sx+P=0Leftrightarrow {{x}^{2}}-2ax+{{a}^{2}}+{{b}^{2}}=0$
Ta chọn đáp án A.
Câu 4. Trong $mathbb{C}$, nghiệm của phương trình ${{z}^{2}}+sqrt{5}=0$ là:
A. $left[ begin{gathered} z = sqrt 5 hfill \ z = – sqrt 5 hfill \ end{gathered} right.$
B. $left[ begin{gathered} z = sqrt[4]{5}i hfill \ z = – sqrt[4]{5}i hfill \ end{gathered} right.$
C. $sqrt{5}i$
D. $-sqrt{5}i$
Lời giải
${{z}^{2}}+sqrt{5}=0Leftrightarrow {{z}^{2}}=-sqrt{5}Leftrightarrow z=pm isqrt[4]{5}$
Ta chọn đáp án A.
Câu 5. Trong $mathbb{C}$, phương trình ${{z}^{4}}-6{{z}^{2}}+25=0$ có nghiệm là:
A. $pm 8 & ,;,pm 5i$
B. $pm 3,;,pm 4i$
C. $pm 5 & ,;,pm 2i$
D. $pm left( 2+i right) & ,;,pm left( 2-i right)$
Lời giải
$begin{gathered} {z^4} – 6{z^2} + 25 = 0 hfill \ Leftrightarrow {left( {{z^2} – 3} right)^2} + 16 = 0 hfill \ Leftrightarrow {z^2} – 3 = pm 4i hfill \ Leftrightarrow {z^2} = 3 pm 4i hfill \ Leftrightarrow left[ begin{gathered} z = pm left( {2 + i} right) hfill \ z = pm left( {2 – i} right) hfill \ end{gathered} right. hfill \ end{gathered} $
Ta chọn đáp án A.
Câu 6. Có bao nhiêu số phức thỏa mãn điều kiện ${{z}^{2}}=|z{{|}^{2}}+overline{z}$?
A. 3
B. 0
C. 1
D. 2
Lời giải
Gọi $z=a+bi,left( a,bin mathbb{R} right)$ là số phức thỏa mãn điều kiện trên. Ta có:
$begin{gathered} {z^2} = |z{|^2} + overline z Leftrightarrow {left( {a + bi} right)^2} = {a^2} + {b^2} + a – bi hfill \ Leftrightarrow a + 2{b^2} – bi – 2abi = 0 hfill \ Leftrightarrow left( {a + 2{b^2}} right) + left( { – b – 2ab} right)i = 0 hfill \ Leftrightarrow left{ begin{gathered} a + 2{b^2} = 0 hfill \ b + 2ab = 0 hfill \ end{gathered} right. Leftrightarrow left{ begin{gathered} a + 2{b^2} = 0 hfill \ left[ begin{gathered} b = 0 hfill \ a = – frac{1}{2} hfill \ end{gathered} right. hfill \ end{gathered} right. hfill \ Leftrightarrow left[ begin{gathered} a = b = 0 hfill \ left{ begin{gathered} a = – frac{1}{2} hfill \ b = pm frac{1}{2} hfill \ end{gathered} right. hfill \ end{gathered} right. hfill \ end{gathered} $
Vậy có 3 số phức thỏa mãn yêu cầu bài toán.
Ta chọn đáp án A.
Câu 7. Phương trình $left( 2+i right){{z}^{2}}+az+b=0,left( a,bin mathbb{C} right)$ có hai nghiệm là $3+i$ và $1-2i$. Khi đó $a=?$
A. -9-2i
B. 15+5i
C. 9+2i
D. 15-5i
Lời giải
Theo Viet, ta có:
$S={{z}_{1}}+{{z}_{2}}=-frac{a}{2+i}=4-iLeftrightarrow a=left( i-4 right)left( i+2 right)Leftrightarrow a=-9-2i$
Ta chọn đáp án A.
Câu 8. Giả sử ${{z}_{1}},{{z}_{2}}$ là hai nghiệm của phương trình ${{z}^{2}}-2z+5=0$ và A, B là các điểm biểu diễn của ${{z}_{1}},{{z}_{2}}$. Tọa độ trung điểm I của đoạn thẳng AB là:
A. $Ileft( 1;1 right)$
B. $Ileft( -1;0 right)$
C. $Ileft( 0;1 right)$
D. $Ileft( 1;0 right)$
Lời giải
${{z}^{2}}-2z+5=0Leftrightarrow {{left( z-1 right)}^{2}}+4=0Leftrightarrow z=1pm 2i$
$Rightarrow Aleft( 1;2 right);,Bleft( 1;-2 right)$
Do đó tọa độ trung điểm I của đoạn thẳng AB là $Ileft( 1;0 right)$.
Ta chọn đáp án A.
Câu 9. Phương trình ${{x}^{4}}+2{{x}^{2}}-24x+72=0$ trên tập số phức có các nghiệm là:
A. $2pm isqrt{2}$hoặc $-2pm 2isqrt{2}$
B. $2pm isqrt{2}$hoặc $1pm 2isqrt{2}$
C. $1pm 2isqrt{2}$ hoặc $-2pm 2isqrt{2}$
D. $-1pm 2isqrt{2}$ hoặc $-2pm 2isqrt{2}$
Lời giải
$begin{gathered} {x^4} + 2{x^2} – 24x + 72 = 0 hfill \ Leftrightarrow left( {{x^2} – 4x + 6} right)left( {{x^2} + 4x + 12} right) = 0 hfill \ Leftrightarrow left[ begin{gathered} {x^2} – 4x + 6 = 0 hfill \ {x^2} + 4x + 12 = 0 hfill \ end{gathered} right. hfill \ Leftrightarrow left[ begin{gathered} {left( {x – 2} right)^2} + 2 = 0 hfill \ {left( {x + 2} right)^2} + 8 = 0 hfill \ end{gathered} right. hfill \ Leftrightarrow left[ begin{gathered} x = 2 pm sqrt 2 i hfill \ x = – 2 pm 2sqrt 2 i hfill \ end{gathered} right. hfill \ end{gathered} $
Ta chọn đáp án A.
Câu 10. Gọi ${{z}_{1}},{{z}_{2}}$ là các nghiệm phức của phương trình ${{z}^{2}}+sqrt{3}z+7=0$. Khi đó $A=z_{1}^{4}+z_{2}^{4}$ có giá trị là:
A. 23
B. $sqrt{23}$
C. 13
D. $sqrt{13}$
Lời giải
Theo Viet, ta có: $left{ begin{gathered} S = {z_1} + {z_2} = – frac{b}{a} = – sqrt 3 hfill \ P = {z_1}.{z_2} = frac{c}{a} = 7 hfill \ end{gathered} right.$
$begin{gathered} A = z_1^4 + z_2^4 hfill \ = {left( {{S^2} – 2P} right)^2} – 2{P^2} hfill \ = {left( {3 – 2.7} right)^2} – 2.49 hfill \ = 23 hfill \ end{gathered} $
Ta chọn đáp án A.