Phương trình trạng thái khí lí tưởng

Thuyết động học phân tử cho biết bản chất của nhiệt chính là sự chuyển động hỗn loạn của các phân tử, đánh đổ hoàn toàn các quan điểm về chất nhiệt trước đó. Nó giải thích thỏa đáng mọi hiện tượng và tính chất nhiệt của các chất. Từ phương trình cơ bản (7.1), ta tìm được phương trình trạng thái khí lí tưởng, kiểm nghiệm lại các định luật thực nghiệm về chất khí trước đó.

1. Phương trình trạng thái khí lí tưởng

Trạng thái của một hệ vật lý được mô tả bởi các thông số – gọi là thông số trạng thái. Thông số nào đặc trưng cho tính chất vi mô của hệ thì ta gọi đó là thông số vi mô; thông số nào đặc trưng cho tính chất vĩ mô của hệ thì ta gọi đó là thông số vĩ mô.

Trạng thái của một khối khí lí tưởng có thể được mô tả bởi các thông số vĩ mô: nhiệt độ T, áp suất p và thể tích V. Phương trình diễn tả mối quan hệ giữa các thông số đó, được gọi là phương trình trạng thái lí tưởng. Ta có thể tìm được mối quan hệ này từ phương trình cơ bản của thuyết động học phân tử (7.1).

Thật vậy: Nếu gọi n là nồng độ (mật độ) phân tử khí thì số phân tử khí chứa trong thể tích V là: ( N = nV ).

Từ (7.4), suy ra: ( p.V=nkT.V=NkT=frac{N}{{{N}_{A}}}{{N}_{A}}kT ), với NA là số phân tử chứa trong một mol khí ( ( {{N}_{A}}=6,{{02.10}^{23}}text{ }mo{{l}^{-1}} ) do nhà Bác học Avogadro xác lập nên được gọi là số Avogadro); ( frac{N}{{{N}_{A}}}=frac{m}{mu } ) = số mol khí.

Vậy: ( pV=frac{m}{mu }RT ) (7.6)

trong đó, R là hằng số khí lí tưởng:

(R=k.{{N}_{A}}=1,{{38.10}^{-23}}.6,{{02.10}^{-23}}=8,31text{ }left( J.mo{{l}^{-1}}.{{K}^{-1}} right))(=0,082text{ }left( ncvanhoa.org.vn{{l}^{-1}}.{{K}^{-1}} right)=0,084text{ }left( ncvanhoa.org.vn{{l}^{-1}}.{{K}^{-1}} right))

Phương trình (7.6) được gọi là phương trình Mendeleev – Clapeyron. Đó chính phương trình trạng thái của một khối khí lí tưởng bất kì.

Đối với một khối khí xác định (m = const), ta có: ( frac{pV}{T}=const ) (7.7)

Vậy, với một khối khí xác định, khi biến đổi từ trạng thái (1) sang trạng thái (2) thì: ( frac{{{p}_{1}}{{V}_{1}}}{{{T}_{1}}}=frac{{{p}_{2}}{{V}_{2}}}{{{T}_{2}}} ) (7.8)

(7.7) và (7.8) là các phương trình trạng thái của một khối khí lí tưởng xác định.

2. Các định luật thực nghiệm về chất khí

Từ (7.7) ta có thể tìm lại các định luật thực nghiệm về chất khí.

a) Định luật Boyle – Mariotte

Khi ( T = const ), từ (7.7), suy ra: ( pV = const ) (7.9)

Hay p1V1 = p2V2 (7.9a)

Vậy, ở nhiệt độ nhất định, áp suất và thể tích của một khối khí xác định tỉ lệ nghịch với nhau.

Đường biểu diễn áp suất p biến thiên theo thể tích V khi nhiệt độ không đổi được gọi là đường đẳng nhiệt. Đường đẳng nhiệt là một đường cong Hyperbol. Với các nhiệt độ khác nhau thì đường thẳng nhiệt cũng khác nhau. Đường nằm trên có nhiệt độ cao hơn đường nằm dưới (T2 > T1) (hình 7.3).

b) Định luật Gay Lussac

Khi ( p = const ), từ (6.7) suy ra: ( frac{V}{T}=const ) hay ( frac{{{V}_{1}}}{{{T}_{1}}}=frac{{{V}_{2}}}{{{T}_{2}}} ) (7.10)

Vậy, ở áp suất nhất định, thể tích và nhiệt độ tuyệt đối của một khối khí xác định tỉ lệ thuận với nhau.

Đường biểu diễn thể tích V biến thiên theo nhiệt độ T khi áp suất không đổi, được gọi là đường đẳng áp. Đường đẳng áp là một đường thẳng có phương đi qua gốc tọa độ (hình 7.4). Áp suất càng thấp đường biểu diễn càng dốc.

c) Định luật Charles

khi V = const, tương tự, ta cũng có: ( frac{p}{T}=const ) hay ( frac{{{p}_{1}}}{{{T}_{1}}}=frac{{{p}_{2}}}{{{T}_{2}}} ) (7.11)

Vậy, ở thể tích nhất định, áp suất và nhiệt độ tuyệt đối của một khối khí xác định tỉ lệ thuận với nhiệt nhau.

Đường biểu diễn áp suất p biến thiên theo nhiệt độ T khi thể tích không đổi, được gọi là đường đẳng tích. Đường đẳng tích là một đường thẳng có phương qua gốc tọa độ và có độ dốc càng lớn khi thể tích càng nhỏ.

d) Định luật Dalton

Xét một bình kín chứa một hỗn hợp gồm m chất khí khác nhau. Gọi n1, n2, …., nm là nồng độ tương ứng của các khí thành phần thì nồng độ của hỗn hợp khí đó là n = n1 + n2 + … + nm.

Theo (7.4), ta có: ( p=nkT=left( {{n}_{1}}+{{n}_{2}}+{{n}_{3}}+…+{{n}_{m}} right)kT )

Hay ( p={{n}_{1}}kT+{{n}_{2}}kT+{{n}_{3}}kT+…+{{n}_{m}}kT={{p}_{1}}+{{p}_{2}}+…+{{p}_{m}} ) (7.12)

Vậy, áp suất của một hỗn hợp khí bằng tổng các áp suất riêng phần của các khí thành phần tạo nên.

Trả lời

Email của bạn sẽ không được hiển thị công khai.