Tính chất, dấu hiệu nhận biết hình thoi, cách chứng minh hình thoi

chứng minh hình thoi

Hình thoi là một tứ giác có 4 cạnh bằng nhau. Đây cũng là một dạng đặc biệt của hình bình hành. Bài viết sẽ chia sẻ các tính chất của hình thoi, dấu hiệu nhận biết hình thoi kèm cách phương pháp chứng minh một tứ giác là hình thoi.

Contents

  • 1 Các tính chất của hình thoi
  • 2 Dấu hiệu nhận biết hình thoi
  • 3 Các cách chứng minh hình thoi
    • 3.1 Cách 1: Tứ giác có bốn cạnh bằng nhau
    • 3.2 Cách 2: Tứ giác có 2 đường chéo là đường trung trực của nhau
    • 3.3 Cách 3: Hình bình hành có hai cạnh kề bằng nhau
    • 3.4 Cách 4: Hình bình hành có hai đường chéo vuông góc

Các tính chất của hình thoi

Hình thoi có các tính chất cơ bản sau:

  • Các cạnh đối song song với nhau
  • Các góc đối nhau bằng nhau.
  • Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.
  • Hai đường chéo là các đường phân giác của các góc của hình thoi.
  • Hình thoi có tất cả tính chất của hình bình hành.

Dấu hiệu nhận biết hình thoi

Hình thoi mà một tứ giác đặc biệt với các dấu hiệu nhận biết như sau:

  • Có bốn cạnh bằng nhau
  • Có 2 đường chéo là đường trung trực của nhau
  • Có 2 đường chéo là đường phân giác của cả bốn góc

Bên cạnh đó, hình thoi cũng là một hình bình hành đặc biệt. Nếu tứ giác đã biết là một hình bình hành và có những đặc điểm dưới đây thì tứ giác đó là hình thoi:

  • Có hai cạnh kề bằng nhau là hình thoi.
  • Có hai đường chéo vuông góc với nhau
  • Có một đường chéo là đường phân giác của một góc

Các cách chứng minh hình thoi

Để chứng minh một tứ giác hoặc một hình bình hành là hình thoi, chúng ta sẽ dựa vào các dấu hiệu nhận biết hình thoi như đã nêu ở trên.

Ví dụ cụ thể:

Cách 1: Tứ giác có bốn cạnh bằng nhau

Ví dụ: Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của hình thoi.

tính chất hình thoi

Xét ΔABD có E và H lần lượt là trung điểm của AB và AD

⇒ EH là đường trung bình của ΔABD

⇒ EH = 1/2 BD (1)

Chứng minh tương tự ta có: EF = 1/2 AC; FG = 1/2 BD; HG = 1/2 AC (2)

Vì ABCD là hình chữ nhật nên AC = BD (3)

Từ (1), (2) và (3), ta suy ra EH = EF = HG = GF

⇒ Tứ giác EFGH là hình thoi do có bốn cạnh bằng nhau.

Cách 2: Tứ giác có 2 đường chéo là đường trung trực của nhau

Ví dụ: Cho hình bình hành ABCD có AB = AC. Kéo dài trung tuyến AM của ΔABC và lấy ME = MA. Chứng minh tư giác ABEC là hình thoi.

cách chứng minh hình thoi

Ta có:

ΔABC cân tại A có trung tuyến AM

⇒ AM là đường trung trực của BC

⇒ Tứ giác ABEC là hình thoi do có 2 đường chéo là đường trung trực của nhau.

Cách 3: Hình bình hành có hai cạnh kề bằng nhau

Ví dụ: Cho tam giác ABC, lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD = CE. Gọi M, N, I, K lần lượt là trung điểm của BE, CD, DE, BC. Chứng minh rằng: IMNK là hình thoi.

Lời giải:

M là trung điểm của BE và I là trung điểm của DE

⇒ MI là đường trung bình của ΔBDE

⇒ MI // BD và MI = 1/2 BD

Chứng minh tương tự, ta có:

NK // BD và NK= 1/2 BD

Do có MI // NK và MI = NK nên tứ giác MINK là hình bình hành (4)

Chứng minh tương tự, ta có: IN là đường trung bình của ΔCDE

⇒ IN = 1/2 CE mà CE = BD (gt) => IN = IM (5)

Từ (4) và (5) ⇒ Tứ giác MINK là hình thoi do là hình bình hành có hai cạnh kề bằng nhau.

Cách 4: Hình bình hành có hai đường chéo vuông góc

Ví dụ: Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Chứng minh rằng giao điểm các đường phân giác trong của các tam giác ΔAOB; ΔBOC; ΔCOD và ΔDOA là đỉnh của một hình thoi.

các cách chứng minh hình thoi

Lời giải chi tiết:

Gọi M, N, P, Q lần lượt là giao điểm các phân giác trong của các tam giác AOB, BOC, COD và DOA.

Do O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD nên OA = OC và OB = OD.

Xét ΔBMO và ΔDPO có:

Góc B1 = D1 và Góc O1 = O2 ( đối đỉnh ) và OB = OD (gt)

=> ΔBMO = ΔDPO (g. c. g)

=> OM = OP và các điểm M, O, P thẳng hàng (6)

Chứng minh tương tự: ON = OQ và N, O, P thẳng hàng (7)

Từ (6) và (7) Suy ra: Tứ giác MNPQ là hình bình hành do các đường chéo cắt nhau tại trung điểm mỗi đường. (8)

Mặt khác OM, ON là hai đường phân giác của hai góc kề bù nên OM ⊥ ON. (9)

Từ (8) và (9) suy ra: MNPQ là hình thoi do là hình bình hành có hai đường chéo vuông góc.

Trên đây là những chia sẻ về các tính chất hình thoi, cũng như dấu hiệu nhận biết và cách chứng minh một tứ giác là hình thoi. Nếu có bất kỳ thắc mắc gì trong phần kiến thức này, hãy comment bên dưới bài viết này nhé!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *