Viết phương trình tổng quát của đường thẳng

ncvanhoa.org.vn giới thiệu đến các em học sinh lớp 10 bài viết Viết phương trình tổng quát của đường thẳng, nhằm giúp các em học tốt chương trình Toán 10.

Nội dung bài viết Viết phương trình tổng quát của đường thẳng: Viết phương trình tổng quát của đường thẳng. Để lập phương trình tổng quát của đường thẳng ∆ ta cần xác định một điểm M (x0; y0) thuộc ∆ và một véc-tơ pháp tuyến n = (A; B). Vậy phương trình đường thẳng ∆: A (x − x0) + B (y − y0) = 0. Vậy phương trình tổng quát đường thẳng ∆: Ax + By = C với C = − (Ax0 + By0). BÀI TẬP DẠNG 2 Ví dụ 1. Trong mặt phẳng Oxy, viết phương trình tổng quát đường thẳng ∆ đi qua điểm M(−1; 5) và có véc-tơ pháp tuyến n = (−2; 3). Lời giải. Phương trình đường thẳng ∆: −2(x + 1) + 3(y − 5) = 0 ⇔ −2x + 3y − 17 = 0. Vậy phương trình tổng quát đường thẳng ∆: −2x + 3y − 17 = 0. Ví dụ 2. Trong mặt phẳng Oxy, viết phương trình tổng quát đường thẳng ∆ đi qua điểm N(2; 3) và vuông góc với đường thẳng AB với A(1; 3), B(2; 1). Lời giải. Ta có: AB = (1; −2). Đường thẳng ∆ qua N(2; 3) và nhận AB = (1; −2) làm véc-tơ pháp tuyến. Phương trình đường thẳng ∆: (x − 2) − 2(y − 3) = 0 ⇔ x − 2y + 4 = 0. Vậy phương trình tổng quát đường thẳng ∆ : x − 2y + 4 = 0. Ví dụ 3. Trong mặt phẳng Oxy, viết phương trình tổng quát của đường thẳng d đi qua A(−1; 2) và vuông góc với đường thẳng M: 2x − y + 4 = 0. Cách 1: Phương trình đường thẳng d có dạng: x + 2y + C = 0. Vì d đi qua A(−1; 2) nên ta có phương trình: −1 + 2.2 + C = 0 ⇔ C = −3. Vậy phương trình tổng quát đường thẳng của đường thẳng d: x + 2y − 3 = 0. Cách 2: Đường thẳng M có một véc-tơ chỉ phương u = (1; 2). Vì d vuông góc với M nên d nhận u = (1; 2) làm véc-tơ pháp tuyến. Phương trình đường thẳng d: (x + 1) + 2(y − 2) = 0 ⇔ x + 2y − 3 = 0. Ví dụ 4. Trong mặt phẳng Oxy, cho đường thẳng ∆: x = −2t, y = 1 + t và ∆: x = −2 − t, y = t. Viết phương trình tham số của đường thẳng d đối xứng với ∆ qua ∆. BÀI TẬP TỰ LUYỆN Bài 1. Cho đường thẳng ∆ có phương trình tham số: x = 1 + 2t, y = −3 − t. a) Viết phương trình tổng quát của đường thẳng ∆. b) Viết phương trình tổng quát của đường thẳng l đi qua điểm N (4; 2) và vuông góc với ∆. a) Đường thẳng ∆ có vecto chỉ phương là u = (2; −1) nên có véc-tơ pháp tuyến là n = (1; 2). Chọn tham số t = 0 ta có ngay điểm A (1; −3) nằm trên ∆. Phương trình tổng quát của đường thẳng ∆ là: 1.(x − 1) + 2. [y − (−3)] = 0 ⇔ x + 2y − 5 = 0 b) Đường thẳng l vuông góc với ∆ nên có vecto pháp tuyến là nl = (2; −1). Phương trình tổng quát của đường thẳng l là: 2 (x − 4) − 1 (y − 2) = 0 ⇔ 2x − y − 6 = 0 Bài 2. Trong mặt phảng Oxy, cho đường thẳng d có hệ số góc bằng −3 và A (1; 2) nằm trên d. Lập phương trình tổng quát của đường thẳng d. Lời giải. Đường thẳng dcó hệ số góc bằng −3 nên có vec-tơ pháp tuyến là (3; 1). Đường thẳng d đi qua điểm A (1; 2) và có vec-tơ pháp tuyến là (3; 1) nên có phương trình tổng quát là: 3 (x − 1) + 1 (y − 2) = 0 ⇔ 3x + y − 5 = 0 Bài 3. Trong mặt phẳng Oxy, viết phương trình tổng quát của đường thẳng d đi qua A (2; −5) và nó tạo với trục Ox một góc 60◦. Lời giải. Hệ số góc của đường thẳng d là k = tan 60◦ = √3. Phương trình đường thẳng d là: y = √3 (x − 2) − 5 ⇔ √3x − 3y − 15 − 2√3 = 0. Bài 4. Trong mặt phẳng Oxy, cho đường thẳng d: y = 2x + 1, viết phương trình đường thẳng d0 đi qua điểm B là điểm đối xứng của điểm A (0; −5) qua đường thẳng d và song song với đường thẳng y = −3x + 2. Đường thẳng AB vuông góc với đường thẳng d nên ta có: kAB.2 = −1 ⇔ kAB = − 1. Phương trình đường thẳng AB là: y = − 1(x − 0) − 5 ⇔ y = − 1x − 5. Vì A và B đối xứng nhau qua đường thẳng d nên trung điểm N của chúng sẽ là giao điểm của hai đường thẳng d và AB. Suy ra tọa độ của điểm N là nghiệm của hệ phương trình: y = 2x + 1, y = − x − 5 ⇔ y = −3x − 17. Bài 5. Trong mặt phẳng Oxy, cho đường thẳng d : 2x − 3y + 1 = 0 và điểm A (−1; 3). Viết phương trình đường thẳng d0 đi qua A và cách điểm B (2; 5) khoảng cách bằng 3. Bài 6. Trong mặt phẳng Oxy, viết phương trình đường thẳng đi qua điểm M (2; 5) và cách đều A (−1; 2) và B (5; 4). Gọi phương trình đường thẳng d cần tìm là ax + by + c = 0 (a2 + b2 khác −1) (1). Do M (2; 5) ∈ d nên ta có: 2a + 5b + c = 0 ⇔ c = −2a − 5b. Thay c = −2a − 5b vào (1) ta có phương trình đường thẳng d trở thành: ax + by − 2a − 5b = 0 (2). Vì d cách đều hai điểm A và B. Trường hợp 1: Với b = 0 thay vào (2) ta được phương trình đường thẳng d là: ax + 0y − 2a − 5.0 = 0 ⇔ ax − 2a = 0 ⇔ x − 2 = 0. Trường hợp 2: Với b = −3a ta chọn a = 1, b = −3 thay vào (2) ta được phương trình đường thẳng d là: 1x − 3y − 2 − 5.(−3) = 0 ⇔ x − 3y + 13 = 0.

BÀI VIẾT LIÊN QUAN

  • Viết phương trình tổng quát của đường thẳng
  • Vị trí tương đối của điểm, đường thẳng, đường tròn với đường tròn
  • Viết phương trình tham số và chính tắc của đường thẳng
  • Viết phương trình tham số của đường thẳng
  • Nhận dạng phương trình đường tròn. Tìm tâm và bán kính đường tròn
  • Viết phương trình chính tắc của đường elip
  • Viết phương trình đường tròn
  • Viết phương trình tiếp tuyến với đường tròn
  • Chứng minh ba điểm thẳng hàng, điểm thuộc đường thẳng
  • Vẽ biểu đồ tần số và tần suất hình quạt
  • Phương trình tương đương, phương trình hệ quả
  • Vị trí tương đối của hai đường thẳng
  • Xét vị trí tương đối của hai đường thẳng
  • Tìm tọa độ đỉnh và giao điểm của parabol với các trục tọa độ, tọa độ giao điểm giữa parabol với đường thẳng
  • Dựa vào đồ thị, biện luận theo tham số m số giao điểm của parabol và đường thẳng

Trả lời

Email của bạn sẽ không được hiển thị công khai.