Dấu hiệu nhận biết hình bình hành, cách chứng minh hình bình hành

cách chứng minh hình bình hành

Hình bình hành là tứ giác có 2 cặp cánh đối song song với nhau. Đây là một dạng đặc biệt của hình thang. Bài viết này, Boxthuthuat sẽ chia sẻ với các bạn về dấu hiệu nhận biết hình bình hành, cách chứng minh một tứ giác là hình bình hành.

Xem thêm: Cách chứng minh hình bình hành

Contents

  • 1 Các dấu hiệu nhận biết hình bình hành
  • 2 Cách chứng minh hình bình hành
    • 2.1 Bài tập về chứng minh hình bình hành

Các dấu hiệu nhận biết hình bình hành

Nếu một tứ giác có các dấu hiệu dưới đây thì tứ giác đó là một hình bình hành:

  1. Có hai cặp cạnh đối song song
  2. Có các cạnh đối bằng nhau
  3. Có một cặp cạnh đối vừa song song và vừa bằng nhau
  4. Có góc đối bằng nhau
  5. Có hai đường chéo cắt nhau tại trung điểm của mỗi đường

Nếu một hình thang có các dấu hiệu dưới đây thì tứ giác đó là một hình bình hành:

6. Có hai cạnh đáy bằng nhau

7. Có hai cạnh bên song song với nhau

Hình thoi, hình chữ nhật, hình vuông là các dạng đặc biệt của hình bình hành.

Cách chứng minh hình bình hành

Để chứng minh một tứ giác là hình bình hành, chúng ta sẽ dựa vào các dấu hiệu nhận biết hình bình hành như đã nếu ở trên, hoặc chứng minh tứ giác đó là hình thang sau đó dựa vào các dấu hiệu nhận biết hình bình hành qua hình thang để chứng minh tiếp.Công thức tính chu vi, diện tích hình bình hành

Có thể bạn quan tâm: Công thức tính chu vi, diện tích hình bình hành

Bài tập về chứng minh hình bình hành

Bài 1: Các câu sau đúng hay sai?

a) Hình thang có hai cạnh đáy bằng nhau là hình bình hành

b) Hình thang có hai cạnh bên song song là hình bình hành

c) Tứ giác có hai cạnh đối bằng nhau là hình bình hành

d) Hình thang có hai cạnh bên bằng nhau là hình bình hành

Lời giải:

a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bằng nhau nên là hình bình hành theo dấu hiệu nhận biết 5

b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa)

c) Sai, vì hình thang cân có hai cạnh đối (hai cạnh bên) bằng nhau nhưng nó không phải là hình bình hành

d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.

Bài 2. Các tứ giác ABCD, EFGH, MNPQ trên giấy kẻ ô vuông như hình bên dưới có là hình bình hành hay không?

chứng minh hình bình hành

Lời giải:

Cả ba tứ giác trên đề là hình bình hành vì:

– Tứ giác ABCD có AB // CD và AB=CD=3 ⇒ tứ giác này là hình bình hành (dấu hiệu nhận biết 3)

– Tứ giác EFGH có EH // FG và EH=FH =3 ⇒ tứ giác này là hình bình hành (dấu hiệu nhận biết 3)

– Tứ giác MNPQ có MN=PQ và MQ=NP ⇒ tứ giác này là hình bình hành (dấu hiệu nhận biết 2)

(Chú ý:

– Hai tứ giác ABCD, EFGH còn có thể nhận biết là hình bình hành bằng dấu hiệu nhận biết 2 (AB=CD, BC=AD; EF=GH, FG=EH)

– Tứ giác MNPQ còn có thể nhận biết là hình bình hành bằng dấu hiệu nhận biết 5

Bài 3: Cho hình bình hành ABCD. Gọi E, F là trung điểm của AD, BC. Chứng minh rằng BE = DF

Tham khảo: Văn bằng 2 tiếng Anh là gì? Học trong bao lâu? – EduLife

Lời giải:

Ta có:

DE = 1/2.AD; BF = 1/2.BC

ABCD là hình bình hành ⇒ AD = BF

=> DE = BF

Tứ giác BEDF có:

DE // BF (vì AD // BC)

DE = BF

⇒ BEDF là hình bình hành

⇒ BE = DF

Bài 4: Cho hình bình hành ABCD (AB>BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.

a) Chứng minh rằng DE // BF

b) Tứ giác DEBF là hình gì? Vì sao?

Lời giải:

chứng minh các dấu hiệu nhận biết hình bình hành

b) Tứ giác DEBF có:

DE // BF (chứng minh ở câu a)

BE // DF (vì AB // CD)

⇒ Tứ giác DEBF là hình bình hành.

Bài 5: Cho hình bên dưới. Trong đó ABCD là hình bình hành, AH, CH cùng vuông góc với BD

a) Chứng minh rằng AHCK là hình bình hành

b) Gọi O là trung điểm của HK. Chứng minh rằng ba điểm A, O, C thẳng hàng.

Lời giải:

a) Hai tam giác vuông AHD và CKD có:

AD = CB (gt)

∠D1 = ∠B1 (so le trong)

⇒ ∆AHD = ∆CKB (cạnh huyền, góc nhọn)

⇒ AH = CK

Đọc thêm: Viết bài tập làm văn số 1 lớp 10 đề 2 trang 27 SGK Ngữ văn 10 | Văn mẫu 10

Tứ giác AHCK có AH // CK, AH = CK ⇒ AHCK là hình bình hành,

b) Xét hình bình hành AHCK, trung điểm O của đường chéo của hình bình hành. Do đó ba điểm A, O, C thẳng hàng.

Bài 6: Tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?

Lời giải:

Tứ giác EFGH là hình bình hành.

Cách 1: EB = EA, FB = FC (giả thiết)

Nên EF là đường trung bình của ∆ABC.

Do đó EF // AC

Tương tự HG là đường trung bình của ∆ACD.

Do đó HG // AC

⇒ EF // HG (1)

Chứng minh tương tự ⇒ EH // FG (2)

Từ (1) và (2) suy ra EFGH là hình bình hành (dấu hiêu nhận biết 1).

Cách 2: EF là đường trung bình của ∆ABC nên EF = 1/2.AC.

HG là đường trung bình của ∆ACD nên HG = 1/2 AC.

Suy ra EF = HG

Lại có EF // HG ( chứng minh trên)

Vậy EFGH là hình-bình-hành (dấu hiệu nhận biết 3).

Bài 7: Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng:

a) AI // CK

b) DM = MN = NB

Lời giải:

chứng minh tứ giác là hình bình hành

a) Tứ giác ABCD có AB = CD, AD = BC nên là hình bình hành.

Tứ giác AICK có AK // IC, AK = IC nên là hình bình hành.

Do đó AI // CK

b) ∆DCN có DI = IC, IM // CN.

(vì AI // CK) nên suy ra DM = MN

Chứng minh tương tự đối với ∆ABM ta có MN = NB.

Vậy DM = MN = NB

Trên đây là chia sẻ về các dấu hiệu nhận biết hình bình hành kèm hướng dẫn cách chứng minh tứ giác là hình bình hành, có ví dụ minh họa. Nếu có bất kỳ thắc mắc gì về phần kiến thức này, hãy comment bên dưới bài viết nhé!

ID bài viết: 141656

Danh mục: Tin tức

Nguồn: https://ncvanhoa.org.vn

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *